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Abstract

In this report we investigate the thermal evolution in a one-dimensional bagasse
stockpile. The mathematical model is taken from the work of Gray et al. [4] and
involves four unknowns, the temperature, oxygen, liquid water and water vapour.
We first non-dimensionalise the model to identify dominant terms and so simplify
the system. We then calculate solutions for the approximate and full system. It
is shown that under certain conditions spontaneous combustion will occur. Most
importantly we show that spontaneous combustion can be avoided by sequential
building. For example, in a situation where say a 6m stockpile can spontaneously
combust we could construct a 3m pile then some days later add another 3m to
produce a stable 6m pile.

1 Introduction

Bagasse is the residue which remains after sugar cane has been crushed and the majority
of the juice extracted. In the past it was viewed as a waste product, however it is now used
as a biofuel and also in the manufacture of building materials. Outside of South Africa
bagasse has been used as a fuel in the factory boilers for co-generation of steam and
electricity. This obviously reduces costs and so improves competitiveness. Unfortunately,
it is well-known that large piles of bagasse are prone to spontaneous combustion.

The Sugar Milling Research Institute (SMRI) situated in KwaZulu-Natal in South
Africa is interested in storing bagasse for use in their furnaces, but due to obvious safety
issues they would first like to understand the processes behind spontaneous combustion.
Consequently, at the 2016 and 2017 Mathematics in Industry Study Group meetings the
SMRI discussed three issues related to safe storage of bagasse:

∗Centre de Recerca Matemàtica, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Barcelona, Spain.
email: tmyers@crm.cat

†MACSI, Department of Mathematics and Statistics, University of Limerick, Limerick, Ireland. email:

sarah.mitchell@ul.ie

55



56 Safe storage of sugar cane bagasse

(i) Calculating the maximum height of the bagasse heap required to avoid spontaneous
combustion;

(ii) Investigating whether or not there are advantages in adjusting the moisture content;

(iii) Investigating whether or not there is an advantage in pelletizing the bagasse.

The first recorded bagasse spontaneous combustion incident took place in the Mourilyan
stockpile in 1983. This incident motivated experiments, some of which were made in [1, 2]
in 1984, that attempted to find out why bagasse would spontaneously combust and which
conditions led to this phenomenon. Following two more ignition incidents between 1983
and 1988, Dixon [3] investigated the process of spontaneous combustion of bagasse and
found that moisture content plays a very significant role in the process. Recommendations
were therefore made that the effect of moisture content should never be neglected in the
mathematical modelling of the spontaneous combustion of bagasse stockpiles.

Spontaneous combustion has been observed in a number of other industries and con-
sequently there is a rich literature on the topic. In the following we base our work on the
one-dimensional models developed by Gray and co-workers [1, 2, 3, 4].

2 Governing equations

Our mathematical study is based on the following four equations:
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These represent conservation of energy via temperature T (K), water vapour V (mol/m3),
liquid water W (mol/m3), and oxygen X (mol/m3) (note we use a more natural notation
for the variables than that prescribed in [4]). For the present study a one-dimensional
model is considered therefore the quantities temperature, water vapour, liquid content
and oxygen vary with the height of the stockpile, x, and time, t. The exponential terms
represent the heat sources and take a standard Arrhenius form, where Ed is the activation
energy for the dry reaction, Ew for the wet reaction and Lv the latent heat of vaporisation.
The various other constants and typical values are described in Table 1.
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The function g(T ) is a switch that turns off the wet reaction at T = Ts,

g(T ) =
1

2

[
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)

+ 1
]

. (5)

The system is subject to the following boundary conditions. At the top surface, x = L,
we impose Newton cooling conditions, stating that the exchange of temperature, vapour
and oxygen are driven by the difference between the value on surrounding air and in the
pile:
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Assuming the bagasse is placed on an impermeable surface we impose the following at
x = 0,

T = Ta,
∂V

∂x
= 0,

∂X
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= 0 . (7)

These conditions are based on the assumption that the substrate prevents vapour and
water from passing through. Since the temperature variation is so slow, on the order
of days, it is assumed that it does not significantly affect the (infinitely large) substrate
temperature and the temperatures match there. Obviously these conditions could be
altered if more precise details of the storage area were provided.

We assume that the pile is initially well mixed so that all values are constant (and
known)

T (x, 0) = Tin, V (x, 0) = Vin, W (x, 0) = Win, X(x, 0) = Xin . (8)

To simplify the problem, we will now write the equations in non-dimensional form. The
scaling is as follows:
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where the time- and water-scales, ∆t and ∆W , are the only ones not yet specified.
Writing equation (1) in non-dimensional form, and immediately dropping the primes,
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Parameter Description Value Unit

Ed activation energy of dry reaction 1.08 × 105 J mol−1

Ew activation energy of wet reaction 6.5× 104 J mol−1

R universal gas constant 8.31 J mol−1 K−1

qd exothermicity of dry reaction 1.7× 107 J kg−1

qw exothermicity of wet reaction 6.6× 106 J kg−1

zd pre-exponential factor of the dry reaction 2.7× 107 m3 mol−1 s−1

zw pre-exponential factor of the wet reaction 0.204 m3 mol−1 s−1

ze pre-exponential factor of evaporation 3.41 × 104 s−1

zc pre-exponential factor of condensation 4.7 s−1

Lv latent heat of vaporisation 4.2× 104 J mol−1

k thermal conductivity 0.5 J m−1 K−1 s−1

DV , DX water vapour and oxygen diffusivities, resp., 2.5× 10−5 m2 s−1

h heat transfer coefficient 5 J m−2 K−1 s−1

hV , hX water vapour and oxygen transfer coefficients, resp., 5 m s−1

mw mass of water 1.8× 10−2 kg mol−1

ρw density of water 1× 103 kg m−3

ρb density of dry bagasse 125 kg m−3

cw specific heat capacity of water 4.19 × 103 J kg−1 K−1

cb specific heat capacity of dry bagasse 1.4× 103 J kg−1 K−1

Ts switch temperature 333 K
Ta ambient bagasse temperature 303 K
Va ambient water vapour concentration 1.74 mol m−3

Xa oxygen concentration in air 8.04 mol m−3

f moles of O2 consumed per kg of bagasse 33.33 mol kg−1

L height of the bagasse pile 3− 6 m

Table 1: Parameter values for computations
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The quantity of primary interest in this work is the temperature, and so we will work on
the time scale of thermal diffusion. Balancing the left hand side with the first term on
the right hand side leads to
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Taking values from Table 1 we obtain ∆t = 4.56× 106 s, i.e., approximately 53 days.
The three remaining equations (2)-(4) are now
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and so we may choose a value for ∆W by balancing terms on the right hand side. This
gives
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and, using values from Table 1, we find ∆W = 1.03 × 103 ≈ 20 minutes. So the water
equilibrates much faster than the heat. Then (15) simplifies to
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The rapid equilibration of the water is reflected in the coefficient of the time derivative
in (17),

1
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∼ 2.76× 10−5

.
This small value indicates that on the thermal time-scale the water equation is approxi-
mately steady-state.
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The full four-equation model, (10, 12, 14, 15) is now
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Finally, the boundary conditions from (6) become
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On x = 0 the boundary conditions (7) are simply

T =
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and the initial conditions (8) are
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From Table 1 the values of these coefficients are (using L = 3m),

A0 ∼ 0.69, A0 ∼ 0.31, A1 ∼ 0.22, A2 ∼ 4.12, A3 ∼ 1.87× 104 , (26)

B0 ∼ 7.92× 10−2, B1 ∼ 1.69× 106, C0 ∼ 2.76× 10−5 , (27)

D0 ∼ 0.079, D1 ∼ 0.36, D2 ∼ 17.14 , (28)

γd ∼ 36.3, γw ∼ 23.6, γv ∼ 15.3, αT ∼ 30, αV ∼ 6× 105, αX ∼ 6× 105 . (29)

3 Simplified model

The coefficient C0 ≈ 2.8 × 10−5 in front of the time derivative in (20) is very small and
so a simplified model can be prescribed. Ignoring this term in (20) allows us to express
W in terms of V and T (or V in terms of W and T ),
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This will not satisfy the initial condition but since the time derivative is of O(10−5) it
should be a good approximation after a very short time period. This then permits a
significant reduction of the vapour equation (19) to
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If we assume that Vin = Va then the exact solution to this problem is V = 1. If Vin 6= Va

then we can make use of the fact that the coefficient of the time derivative in (31) is
B0 ∼ 0.08 ≪ 1. If we seek a perturbation solution for V = V 0 + ǫV 1 + · · · , where
ǫ = DT/DV , we obtain V 0 = 1, V n = 0 for all n > 1, and so we may assume V = 1 to
a high order of accuracy. Physically this tells us that vapour diffuses rapidly around the
pile (compared to thermal diffusion).

The steady-state approximation for W means that the final term in (18) disappears.
Then we can write equation (18) for the temperature T as
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4 Numerical solution

We briefly describe the numerical solution used to provide the qualitative and approximate
results. We begin by writing (18)-(21) as
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and solve this system using the method of lines. We define the spatial mesh xi = i∆x,
for i = 0, 1, . . . , I, where ∆x = 1/I, and let Ti = T (xi, t), and similarly for Vi, Wi and
Xi. Then we discretise the diffusion terms in (33), (34) and (36) as
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which holds for i = 0, 1, . . . , I. The first boundary condition in (24) on x = 0 immediately
gives T0 = Tin/Ts. For the other remaining conditions in (24), and those in (22) on x = 1,
we obtain further ODEs involving V0, X0, TI , VI and XI . These are
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This system of ODEs is solved, with the initial conditions in (25), using ode23s in Matlab.
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5 Results

In Figure 1 we show the dimensional temperature and vapour distribution in a 3m pile af-
ter approximately 46 days. Given our focus on spontaneous combustion, the temperature
is the quantity of primary interest. From Figure 1a we can see that, so far, this pile gives
no indication of thermal runaway. The initial constant temperature, Tin = 65oC very
quickly reduces to a curved profile satisfying the fixed temperature condition T = 30oC
at x = 0. The maximum temperature remains just below 60oC for almost the whole time
period. After the initial transient the water vapour, shown in Figures 1b, remains close
to Va (= 1.74 mol m−3) for the top two metres (as suggested by the simplified model)
but decreases to just below 0.7 in the bottom metre. Liquid water, shown in Figure 2a
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Figure 1: (a) Temperature in 3m pile after 4×106 s ≈ 46 days. (b) Corresponding
vapour distribution.

builds up at the substrate, where it cannot escape, and also at the top surface where
presumably vapour from the air arrives and condenses to water. Finally, Figure 2b shows
the oxygen content, which obviously decreases away from the top surface as it is required
for the thermal reaction.
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Figure 2: (a) Water distribution in 3m pile. (b) Oxygen distribution.

In Figures 3a, b we present the temperature and oxygen profiles predicted by the sim-
plified two equation model. Comparison with Figure 1a and 2b show excellent agreement,
indicating that the simpler model can provide accurate results. This is slightly surpris-
ing, since the reduction is based on the assumption that V is approximately constant, in
dimensional form V = Va. Yet the solution of the full model, Figure 1b shows clearly that
V is only close to the ambient value in the top 2m of the pile. In the bottom metre it
reduces by almost a factor 3. A possible reason why this error does not affect the tem-
perature is that heat is primarily generated away from the bottom region, as we will see
later, it is generated where the oxygen level is high, i.e., near the surface. Consequently,
although the vapour approximation is inaccurate near the substrate the fact that it is ac-
curate where heat is generated results in a good approximation of the overall temperature
profile.

In Figure 5a we show an example where the pile is close to thermal runaway. The pile
is 5m high and the temperature is plotted up to 46 days. It is interesting to note the
evolution of the temperature. After the initial transient from a well mixed pile the profile
resembles that of the pile shown in Figure 1a for a long time but the maximum is slowly
rising: taking approximately 36 days to increase by ten degrees. In the final five days
there is a rise of 60 degrees, reaching a final maximum of over 150 oC. In Figure 5b we
show the temperature one day later, now the maximum is close to 180oC the point where
the maximum occurs has moved towards the surface, since the oxygen content lower down
in the pile is close to zero. If we continue the simulation much longer the program crashes,
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Figure 3: Results from two equation model. (a) Temperature in 3m pile after
4× 106 s ≈ 46 days. (b) Corresponding oxygen distribution.
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Figure 4: Temperature T in a 5m high pile after, (a) 4×106 s (approximately
46 days), (b) 47 days.
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due to a rapid increase in temperature.

Finally, in Figures 5a, b we demonstrate a possible way forward in the storage of
combustible materials. Figure 5a shows the temperature distribution in a 3m pile one
day after being laid down. This demonstrates how rapidly the temperature adjusts to
the environment. At this stage we add another two metres of material, so the initial
condition for Figure 5b is the temperature in the 3m pile after one day and then a constant
temperature in the top two metres. Again we see a rapid adjustment but, significantly,
after 46 days the maximum temperature is just above 60 degrees and showing no signs
of thermal runaway. In fact, the temperature is slowly decreasing as heat loss to the
surroundings is stronger than the heat generation. This is in contrast to the 5m pile
formed in a single stage where the maximum is almost 150 oC and increasing rapidly. If
we run the same simulation with the two equation model then the temperature profile
takes the same form. The maximum temperature, around 68 o,C is reached after 8 days
and the minimum, at the end of the simulation is approximately 64 oC. The four equation
model reaches its maximum of 67 oC more rapidly, taking close to 4.6 days and the
final minimum is 63 oC. This indicates that the simpler, two equation model can provide
accurate results with less computation (however, further tests reveal that the two equation
model will predict runaway at earlier times than the full model).
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Figure 5: Temperature in (a) a 3m pile after 1 day, (b) a 5m pile after 46
days (made by adding another 2m to the 3m pile after 1 day)
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6 Conclusion

In this report we have presented a mathematical model, coupling the effects of tempera-
ture, liquid water, water vapour and oxygen. The numerical solution of this system shows
that it can predict thermal runaway. Significantly, it also shows a strategy for building
large piles without leading to ignition. Specifically, if we build a pile sequentially we
can avoid spontaneous combustion. In our calculations we demonstrated this with the
example of a single 5m pile, which reached ignition temperature after around 47 days.
However, if instead we laid down a 3m pile, left it for only a day and then added another
2m there was no sign of combustion. Of course we could continue this strategy to make
larger piles, with more layers, but with this single example we have paved the way for a
more complete investigation.

The simplified system, where the vapour was set to its ambient value and the liquid
water expressed by a simple analytical expression, led to good agreement with the full
model prior to thermal runaway, although tests did show that the two equation model
would predict runaway at earlier times.

This brings us to the main question proposed by the SMRI: how high can a bagasse
pile be built without spontaneous combustion occurring? The answer depends crucially
on the method of building. A 5m pile laid down in a single go could ignite, whereas a
pile made up of a 3m one followed by a 2m one may not, even if there is only a single
day between adding the second layer. Multiple layer piles could be significantly higher
than single layer piles. So, there is no simple answer to the question posed by the SMRI.
However, there is a clear recommendation: build sequentially, to allow the initial heat to
escape resulting in thermally stable piles.
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